
OPERATING REGIME OF AN EXPLOSIVE MAGNETIC FIELD 

COMPRESSION GENERATOR WITH A CAPACITIVE LOAD 

WITH A CONSIDERATION OF MAGNETIC FLUX LOSSES 

A. B. Prishchepenko and M. V. Shchelkachev UDC 538.4:621.31 

The operating regime of an explosive magnetic field compression generator with a capaci- 
tive load has been examined [i, 2] in the RLC circuit approximation. The case has been de- 
scribed [I] where the inductance L is a quadratic function of time and the resistance R 
(which determines all losses in the circuit) is linear during the operation of the generator. 
The situation has been investigated [2] where L is a linear function of time and R = const, 
or else L is an exponential function of time and it is assumed either that R = 0 or that 

= R/L = const (which is characteristic for a series of explosive magnetic field compres- 
sion generators [3-7]). For ~ = const, a general solution was obtained for the change in 
flux in the RLC circuit. 

Here we examine a more complex case which reliably describes the actual physical proces- 
ses in a explosive magnetic field compression generator. These processes are characterized 
by a time-varying value of ~ = ~(t). We obtain 1) an asymptotic estimate of the oscillation 
process, which, in spite of the absence of an exact solution, can be used to determine the 
magnitude and variation of the frequency, the amplitude of the current and voltage in the 
final stages of the magnetic generator operation; and 2) exact solutions which consider the 
initial conditions under the assumption ~ = const for an exponential and a linear time-de- 
pendence of the inductance. The solutions were investigated for a range of initial induc- 
tances I00-i000 ~H and a load capacity of 10-1~ -s F. 

I. The operating regime of the exposive magnetic field compression generator is de- 
scribed within the framework of the circuit shown in Fig. i. Here Lg and Ls are the induc- 
tances of the generator and the load, C is the capacitance of the load, and R is the effec- 
tive resistance, which determines all losses in the circuit. The electrical current I, the 

t 

magnetic flux @ = LI, and the voltage at the capacitor U=~- Idt are described by the 

0 

equations 

( I L ) ' + R I + -  d- 1dr=O,  +-Z-qb+~ - Tdt=O, (1.1) 
0 0 

i 
L U " + ( L '  + R) U' + --d-U= 0 

where L = Lg + Ls is the inductance of the circuit. It is assumed that at t = 0 (at the 
start of the generator operation), @ = @0, I = I0, and U = O. Let 

L = Lo/(x), "c = t/~z, ( 1 . 2 )  

where T L is the characteristic time for changing the inductance; L 0 is the initial induc- 

Lg 

o 

Fig. 1 
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tance of the circuit; f(x) > 0 is a monotonically decreasing differentiable function [f(0) = 
i, f'(T) < 0, and f"(T) > 0; for �9 ~ ~, f(~), f'(~), and f"(~) tend to zero]. This depen- 
dence, for example, describes the change in the inductance of a helical generator in which 
the step of the helical windings increases along the length of the generator. We transform 
the integral-differential equations (I.i) into differential equations in a dimensionless 
form by using (1.2): 

y~ + P~ (~) y; + O~ (~) w = o, ( 1 . 3 )  
Ul = ] = 1/[0, P l  = ~ ' #  + v, Q1 = 1 " #  -[- Yft~ -~- v'  + 0 2 ~ ,  

V, = V = U % / ( I o L o ) ,  Pz  = v + / ' # ,  Qz = 0~#, 

a ( ~  = B ( ~ / L  (~), 0 ~ = ~ / ( C L o )  = const (i = L 2, 3). 

Hereafter the subscript 1 denotes quantities characterizing the current, 
3 the magnetic flux. From Eqs. (1.1)-(1.3), it follows that 

= J / ,  V' = O~d. 

We write the initial conditions for �9 = 0, by using Eqs. (i.I): 

Y= t , d ' + / ' ~ + v  = 0 ,  V = 0 ,  V ' - - 0 ~ = 0 ,  ~ = t , ~ '  + v  = 0 .  

I f  we r e d u c e  ( 1 . 3 )  t o  two t e r m s  by u s i n g  t h e  f o r m u l a t i o n  

2 the voltage, and 

(1.4) 

( 1 . 5 )  

we have 

[ ] 
�9 0 

t 
y l  A = A 

[ ; ] ~ (~) & , v3 = A (~) x~ (% A (T) = exp - -  - 2  
O 

( 1 . 6 )  

tt 2 
xi + q~ (~) xi = O, qi = Q~ - -  P i / 4  - -  P~/2,  ( 1 . 7 )  

, ql = qa = 02# + v'12 - -  vV4, 

0 2 2 t "v 2 . . . . . . . .  
q ~ = - 7  - +  - - - U  2 2 f 2f" 

By u s i n g  t h e  p r o p e r t i e s  o f  t h e  s o l u t i o n s  t o  s e c o n d - o r d e r  e q u a t i o n s  o f  t h e  type, ( 1 . 7 )  
and the asymptotic formulas (the WEB approximation [8]), the character of the process can 
be determined from features of the reduced coefficients qi(T). Let the function v(T) (which 
characterizes the magnetic flux losses) and its derivatives be bounded in time; then from 
(1.7) and the properties of the function f(~) (1.2), we obtain that qi(T) remains positive 
during generator operation, independent of the sign of qi(0) at the initial moment of time. 
From this it follows that if the capacitance C is large (8 2 << I) and if qi(0) < 0 at the be- 
ginning of the process, there is an aperiodic regime, which becomes oscillatory for qi(~) > 
0. For small values of the capacitance C (e 2 >> i) and for qi(0) > 0, oscillations occur 
over the whole operation of the generator. 

I! 

If vl"(r) is continuous for ~ > 0 [so that qi(T) is also continuous] and if the condi- 
tion 

o o  

q~ ( 0 >  O, ~ I a~ (~)l d-~ < oo, 

l q;('~) 5 (q~(Z)):, ( i = i ,  2 ,3 ) ,  
�9 % (T )  ( ' ~ )  

(1.7) has two asymptotic WKB solutions for x ~ ~: 

X ~ l  = qT I/~ cos S ]/-q~ (-0 d-c + ~ i  (% x~ = 
0 

"6 

= qT 1]~ sin S ] /q i  (~) dT +- ~i2 ('~), 
0 

(1.8) 

(1.9) 

is fulfilled [8], then Eq. 
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eij(~)<~B~lc~(x)IdT, ]inleii(T) = 0 
%-~ov 

(B = const, i = ! ,  2, 3, ] = 1, 2). 

If in addition to (1.8), the condition 
! 

qi 
lim q ~  = 0, ( I .  10) 
'y---) o o  

is fulfilled, the solutions (1.9) are linearly independent and can be differentiated [8]. 
Then for �9 + ~, we obtain 

x~ x = _ q ~ 1 a s i n ~  V ~ d T ,  ~2=q~/~cos  g ~ d T .  ( 1 . 1 1 )  
0 0 

By u s i n g  Eqs .  ( 1 . 6 ) ,  ( 1 . 9 ) ,  and ( 1 . 1 1 ) ,  we can e s t i m a t e  t h e  f r e q u e n c y  and a m p l i t u d e  o f  t h e  
o s c i l l a t i n g  p r o c e s s .  When 02 >> 1, t h e n  q i  -- 0 2 / f  > 0 a c c o r d i n g  t o  ( 1 . 7 ) ,  which  i s  c h a r a c -  
t e r i s t i c  for a helical inductance, which is distributed exponentially along the length of 
the generator or is not too far from it in any case; for example, for [8] 

]=exp[--~a~x~J], a j = c o n s t ,  b~=cons t  (1.12) 

( j  i s  any  p o s i t i v e  i n t e g e r ) ,  o r  f o r  [3] 

/ = exp [h (1 --  exp (Vr))-- vT], h = const, v = const.. ( 1 . 1 3 )  

C o n d i t i o n s  ( 1 . 8 )  and ( 1 . 1 0 )  a r e  f u l f i l l e d  f o r  q i  = 0 = / f ,  where  f i s  d e t e r m i n e d  by Eq. 
( 1 . 1 2 )  o r  ( 1 . 1 3 ) .  Then Eqs .  ( 1 . 6 )  and ( 1 . 7 )  a r e  s i m p l i f i e d ,  and t h e  a s y m p t o t i c  s o l u t i o n  t o  
Eqs .  ( 1 . 3 )  has  t h e  fo rm 

I i D: (r), V = 0 -:t/2 A ('~) .D 2 (r), 
f (~)1/~ (i. 14) 

Di = C.il cos B(r) + Ci~ sin B('Q, 
1: 

B (r) = 0 J" / (r) -~/2 d~, Cij = const (i, ] = 1, 2). 
0 

Because  o ( r )  i s  a bounded f u n c t i o n ,  i t  f o l l o w s  f rom ( 1 . 6 )  t h a t  A(<) d e c r e a s e s  as  % i n c r e a s e s .  
T h e r e f o r e  t h e  a m p l i t u d e  o f  t h e  v o l t a g e  in  ( 1 . 1 4 )  i n c r e a s e s ,  i f  t h e  f u n c t i o n  

)] ! ( r ) = o [ . 4 ( r ) 4 1 = o  exp - - 2  ,~(r) d~ , 

d e c r e a s e s ,  and t h e  c u r r e n t  a m p l i t u d e  i n c r e a s e s ,  i f  

] (~) = o IA (~)4/3] = 

Here F(~) = o[g(r)] means that, for T >> i, 
der in comparison to g(r). 

We now estimate the amplitude U* = LI' 
terizes the voltage between the cone of the 

)] 2 v (~) dr o exp - -  - ~  
0 

F(~)  i s  an i n f i n i t e l y  s m a l l  q u a n t i t y  o f  h i g h  o r -  

(in a the dimensionless form fJ'), which charac- 
central expansion tube and the windings of the 

helix [3], for qi = 82/f- From (1.1)-(1.4) we obtain 

11: = - ( V  + ]/ '  + ~ )  
By substituting the solution (1.14) into (1.15) we find 

~'(~) n tr~ O-~/~A ('~) D2 (T) + + 

The condition (I.i0) for qi = 02/f has the form 

t . I t  ,. qi (~) (~) 
llm .---r----- = lim . 

(1.15) 

v ]/-fD1(~)]. (1.16) 

(1.17) 
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By using Eqs. (1.17), and also the properties of the function f(~) from (1.16), we obtain 
that Jf' << V and v D << V as < increases. Consequently, for t/T L >> i, the amplitude U* can 
be estimated from the value of the voltage amplitude at the capacitor. 

In order to estimate the oscillation frequency ~ (the carrier frequency, because in a 
real system a spectrum of frequencies is observed), we use the formula 

d~ d~ = 2~ ( 1 . 1 8 )  B (~ + T) - -  B (~) = 0 V ~  

in the solutions (i.14), where B'(x) = @f(T) -I/2 and where T = 2v/(~ L) is the oscillation 
period. By expanding the left side of (1.17) in a Taylor series (assuming that T -> 0 for 
x + =) and keeping only the linear term, we find 

= 0 / ( ~ ) _ 1 1 2  i L ( x )  = L o / ( x  ), T t �9 ~ V ~ '  = ~--f. ( 1 . 1 9 )  

Thus ,  we o b t a i n  t h a t  f o r  0 2 >> 1 (and  f o r  s m a l l  v a l u e s  o f  t h e  c a p a c i t a n c e  C),  t h e  o s c i l l a -  
t i o n  f r e q u e n c y  i n c r e a s e s  w i t h  t i m e  and does  n o t  depend on t h e  m a g n e t i c  f l u x  l o s se s , ,  bu t  de-  
pends  on t h e  c a p a c i t a n c e  o f  t h e  c o n d e n s e r  and t h e  i n d u c t i o n  L ( x )  ( 1 . 1 9 ) .  We now examine  t h e  
c a s e  where  i t  i s  p o s s i b l e  t o  o b t a i n  e x a c t  s o l u t i o n s  t o  Eqs .  ( 1 . 1 )  and ( i . 3 ) .  

2. L e t  t h e  v a r i a t i o n  o f  t h e  i n d u c t a n c e  o f  t h e  e x p l o s i v e  m a g n e t i c  f i e l d  c o m p r e s s i o n  
g e n e r a t o r  be e x p o n e n t i a l  d u r i n g  i t s  o p e r a t i o n  and be d e s c r i b e d  in  t h e  mode ls  [2 ,  4 - 7 ] :  

/(*) = exp (--z), �9 : t /T L. ( 2 . 1 )  

Here  XL i s  o p e r a t i n g  t ime  o v e r  which  t h e  i n d u c t a n c e  o f  t h e  g e n e r a t o r  v a r i e s  by a f a c t o r  o f  
e. Let 

= R(~) /L (x )  = const (v = const) ( 2 . 2 )  

over the whole time of the generator operation [3]. Then we writ~ the coefficients in Eqs. 
(1.3) and (1.7) as 

P1 = v - - 2 ,  Q1 = t - v + O 2 e x p  (~), q l  = 02exp (~)-- v2/4, 

P2 = v - -  1, Q2 =. 02exp (x), q2 = 0 2 e x p ( x ) -  ( ~ -  t ) ~ .  

After we represent the general solution to Eqs. (1.3) in the form of cylinder functions 
[9] and solve the initial-value problem, we have from the properties of the Bessel functions 
[i0] that 

Y 

aOexp(!--~--vT) [ Jv - l (20 )Yv- l (5 ) - -  Yv_l(20)Jv_l(5)],  3= 20exp(~/2). V =  

If there are no magnetic flux losses (R = v = 0), we obtain a solution from (2.3) which co" 
incides with that presented in [2]: 

d = nO e x p ( ~ ) [ J ~ ( 2 0 ) Y o ( 5  ) -  Y~(20)Jo(5)], 

V = nO 2 exp (~2)[J~(20)Y~(5)-- Y~(20)Jl(5)]. 

Oscillations are observed at the end of the generator operation (x ~ ~). From (2.3) it fol- 
lows that 

J =  V ~  exp ( ~  T) [Y~_I (20) cos ~ --  Jv_l  (20) sin ~] , 

[ ~ I  - -  2v 
V ---- V~-~exp ~--~---XJ[J~,1(28)cos~ + Y~_l(29)sin~], ~ = 

= 20 exp (~c/2) - -  vz~/2 - -  z~/4. 

For  8 + ~,  we f i n d  f rom ( 2 . 3 )  t h a t  

(2.4) 

In  t h i s  c a s e  we can a p p l y  t h e  a s y m p t o t i c  a p p r o x i m a t i o n  ( 1 . 1 4 )  in  t h e  fo rm 

(2.5) 
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j 0-112 13--2v \ 
= exp ( - -~- - - -T)  [C n cos ~ + C12 sin let], 

V=O-1/2exp(~)[C2, cos~ + C : 2 s i n ~ ] ,  C,j --- dons,  (i, ] = t , 2 ) .  
\ - -  l 

(2.6) 

By comparing (2.5) and (2.6), we see that the periods of these oscillations are equal, and 
the amplitudes of the corresponding quantities are mutually proportional. The amplitude in- 
creases with time (2.4)-(2.6) for J if v < 3/2, and for V if v < 1/2. 

Thus, when a = R/L = const, the dimensionless values of the magnetic flux, the current, 
and the voltage depend on the parameters v and 8 during the operation of the explosive mag- 
netic field compression generator. Based on data [3-7], we take the following range of the 
parameter variations: 

* L =  i ... 20 B s e c i L o =  100 ... 1000 ~H (2.7) 

C =  10 -~~ ... 10 -s FI, v = O , t  ... 0,4. 

This combination of dimensional parameters corresponds to O = 1-200. Calculations showed 
that for i E 0 5 2.5, the amplitude envelope of the oscillations can be described by Eqs. 
(2.5) with an absolute error ~5%. The voltage at the capacitor and the current in the cir- 
cuit and the end of the generator operation can be estimated from the envelope of the oscil- 
lation amplitudes. The current amplitude J is independent of 8, and therefore of the capaci- 
tance C. The voltage amplitude is proportional to I0"r The effect of flux losses on 
the oscillation amplitude is very substantial. 

We note that in the case of a purely inductive load in the circuit for C + ~ (0 + 0), 
we have from the solution to (2.3) 

J = exp [(t - -  v)~]. ( 2 . 8 )  

Comparison of (2.5) and (2.8) shows that the growth in the current amplitude during the gen- 
erator operation with a capacitive load is more intensive than for operation with an induc- 
tive load for v < 1/2. 

If we assume that the energy amplification coefficient K E = (I/2)CU2/[(I/2)L01~] is the 
ratio of the condenser energy to the energy of the initial powering of the generator, we ob- 
tain from (1.3) that K E = V2/O 2. The value of K E can be estimated by using (2.5). 

Figure 2 shows the logarithm of the voltage amplitude in (2.5) as a function of time 
for various values of v: 

V U t i - -  2v 
= --Z ]n K E  = ~ T. 

By estimating the oscillation frequency from Eq. (i.18), we find from (2.4) or (2.5) 
that the frequency m is independent of the magnetic flux losses and has the form 

I m (2.9) 
~L ln[~exp(- -W2)  0--1+ t] 

AS 8 o r  �9 i n c r e a s e s ,  t h e  o s c i l l a t i o n  f r e q u e n c y  i n c r e a s e s  a n d  i t s  d e p e n d e n c e  b e c o m e s  a n a l o -  
g o u s  t o  ( 1 . 1 9 )  

0 exp(T/2) ~ t ) t ( 2 . 1 0 )  = c '  L = L0 e x p  �9 = 

F i g u r e  3 s h o w s  t h e  d i m e n s i o n l e s s  f r e q u e n c y  ~ L  a s  a f u n c t i o n  o f  8 " e x p ( ~ / 2 )  a c c o r d i n g  t o  
E q s .  ( 2 . 9 )  a n d  ( 2 . 1 0 )  ( s o l i d  a n d  d a s h e d  l i n e s ) .  E s t i m a t e s  s h o w e d  t h a t  t h e  a b s o l u t e  e r r o r  i n  
t h e  c a l c u l a t i o n  o f  ~ a c c o r d i n g  t o  Eq.  ( 2 . 1 0 )  d o e s  n o t  e x c e e d  10% f o r  0 " e x p ( T / 2 )  ~ 16 .  

3 .  We now e x a m i n e  a c o a x i a l  t y p e  o f  e x p l o s i v e  m a g n e t i c  f i e l d  c o m p r e s s i o n  g e n e r a t o r  ( o r  
a h e l i c a l  g e n e r a t o r  w h o s e  c o i l s  a r e  wound w i t h  a c o n s t a n t  s t e p ) .  H e r e  t h e  b e h a v i o r  o f  t h e  
i n d u c t a n c e  i s  w r i t t e n  i n  t h e  f o r m  [ 2 ,  11]  

i = i --~, ( 3 . 1 )  

w h e r e  "~ " "  = t / T i  a n d  T L~ i s  t h e  c h a r a c t e r i s t i c  t i m e  o v e r  w h i c h  t h e  i n d u c t a n c e  d e c r e a s e s  t o  
z e r o .  Then  t h e  c o e f f i c i e n t s  f o r  E q s .  ( 1 . 3 )  a n d  ( 1 . 7 )  a r e  a s  f o l l o w s :  
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,)=0 

4" / 0 ~ , r  

2 - ~ 0 ~  3 
4 

I '1 
0 8 r +'C 

09r 

10. 

e o:~,(r/e) 

Fig. 2 Fig. 3 

2 0 2 V 0 2 , V' V 2 

P1= v--~--~, QI i - r  i - ~  @ v', 91- ~ - F  2 4' 

02  0 3  ~ v v 2 v '  
P2 v - -  ' Q 2  - ~ _ .~, q2 - 1 - �9 + 4 (~  - -c) - - - - - ~ + '  + 2 ( l  - ~) ~" - -E" 

In accordance with the determination of ~ in (3.1), the explosive magnetic field compres- 
sion generator operates for 0 < �9 < i. The WKB asymptotic approximation cannot be used, 
since for �9 § 1 conditions analogous to (1.8) [8] are not fulfilled. For the case (2.2), 
when R(~)/L(~) = u = const (v = const), the solution to Eqs. (1.3) with the initial condi- 
tions (1.5) can be represented in the form of degenerate hypergeometric functions [9]. We 
obtain in the notations of [10] that 

( ] S= exp(- )r M I - -V,  + (3.2)  v / (  L v- 

J[  02 v] + 
V =  

�9 

where  r ( x )  i s  t h e  gamma f u n c t i o n ,  h e n  t h e  m a g n e t i c  f l u x  l o s s e s  a r e  s m a l l  ('0 -* 0,  02 /v  + ~, 
and 0 i s  f i x e d ) ,  we o b t a i n  f rom ( 3 . 2 )  a s o l u t i o n  [ 1 0 ] ,  which  i s  r e p r e s e n t e d  in  t h e  form o f  
cylinder functions and which coincides with [2]: 

d -- ] / t ~ n 0  [ r  0 (20) J ,  (20 l/ t----  T) - -  J0 (20) Y~ (20 V t  - - ~ ) ]  

v -- no 2[Y0(20)d0(20 l / i  - -  ~)-- ff0(20)Y0(20 l /  t - -  z)]. 

At t h e  end o f  t h e  g e n e r a t o r  o p e r a t i o n  f o r  ~ ~ 1, t h e  s o l u t i o n  ( 3 . 2 )  i s  n o t  e x p r e s s e d  in  
t e r m s  o f  t r i g o n o m e t r i c  f u n c t i o n s ,  a s  opposed  t o  t h e  c a s e  d e r i v e d  in  Sec .  2. For  s m a l l  
v a l u e s  o f  t h e  c a p a c i t a n c e  (C + 0, 02 /v  -* 0% and ~ f i x e d )  t h e  s o l u t i o n  ( 3 . 2 )  i s  s i m p l i f i e d ,  
and o s c i l l a t i o n s  a r e  o b s e r v e d :  

exp (-- v~/2) Cos J =  - [200 Vt---:7)1, (3.3)  (1 -- ~)314 

V = Oe~p(TvT/2) s i n [ 2 0 ( t - -  1 / ~ ) 1 .  
( - )  

The o s c i l l a t i o n  f r e q u e n c y  ~ i n  t h e  s o l u t i o n  ( 3 . 3 )  can  be e s t i m a t e d  f rom f o r m u l a s  a n a l o g o u s  
t o  ( 1 . 1 8 )  and ( 1 . 1 9 ) :  

co= l / l /  L(z)  C, L ( z )  = L o ( t - , ) ,  T =  t /z[ .  

It follows from (3.3) that the current amplitude decreases for T ! 1 - i/(2v), but increases 
for �9 > 1 - i/(2~). The voltage amplitude has a similar dependence for �9 ~i - 3/(2v). The 
oscillation frequency increases with time. 

We note that the characteristic time ~E, determined from (3.1), is much large~= than ~L 
from (2.1). Therefore, if the values of ~ and the initial inductance and capacitance are 
identical, the dimensionless parameters v and 0 at a given point, which are proportional to 
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~ according to (1.3), are much higher than the corresponding parameters in Sec. 2. Calcu- 
lations showed that the growth in the oscillation frequency and amplitude in Eq. (3.3) is 
less intense than for helixeswith an exponential inductance law. 

This investigation makes it possible to estimate the basic parameters, which character- 
ize the operation of a explosive magnetic field compression generator with a capacitive load. 
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